graph_clustering <- function(W, k, nu, td) {
N <- nrow(W)
# Step 1: Compute the parametrized random walk operator P(ν)
D <- diag(rowSums(W))
P_nu <- solve(D) %*% W %*% diag(nu)
# Step 2: Compute the parametrized random walk diffusion kernel K(td,ν)
K_td_nu <- expm::expm(td * (P_nu - diag(N)))
# Step 3: Apply k-means clustering to the rows of K(td,ν)
kmeans_result <- kmeans(K_td_nu, centers = k)
# Step 4: Obtain the k-partition Vtd based on the clustering result
Vtd <- kmeans_result$cluster
# Step 5: Return the partition
return(Vtd)
}